资讯动态
  • 1
    如何提高加工效率和延长刀具寿命
    为了*大限度的降低切削部位的刀尖和零件被加工区域的温度,防止被加工零件表面硬化和刀尖温度过高,增加散热区域、控制切削力。如采用摆线走刀和大进给铣削等方法均能提高其加工效率,延长刀具寿命。第一:充分的冷却、适当的加工线速度、有效的断屑、合理的刀具包角对于控制刀尖温度非常有效。对于同时具有内冷却的CNC机床和刀具,应该尽量使用*利于降温的内冷却功能,以便使强有力的高压水流带走大量的切削热,确保加工区域保持在一定的温度范围内。即使没有内冷却功能的机加工设备,也建议使用外传内冷却刀柄,同时增强冷却压力,改善冷却效果。第二:适当地控制刀具的切削力和切削速度,也是降低加工区域温度、延长刀具寿命*有效的方法之一。通常加工难加工材料一般均采用精磨的刀具刃口、较小的切削深度和切削宽度。根据不同的难加工材料、零件结构和加工设备等因素,选用合理的切削线速度非常重要。在通常加工中,镍基合金应控制在20~50m/min,钛合金应控制在30~110m/min,PH不锈钢应控制在50~120m/min。第三,对于同样的机床和零件,加工难加工材料的方法会大大影响刀具的加工效率和刀具寿命。无论是采用摆线加工、螺旋插补和大进给铣削方式,其目的都是降低切削力、减小切削区温度。摆线切入法可*大限度减小切削区,使得刀具的实际切削包角*小,延长刀具每齿的散热时间;螺旋插补使得每齿切削量相对均匀,特别是在拐角处*为明显;大进给切削方式,以小的切深、大的进给有效地减小了切削力,使得加工中产生*小的切削热,加工区域温度*低。第四,保证加工中断屑,也是控制温升的有效途径。一般在金属加工中大量的切削热产生在切屑上,有效地断屑会使加工中产生的大量切削热被切屑带走。通常情况下,在加工中大家不希翼有长的切屑产生。对于难加工材料的加工更应该注意,特别是对于粗加工工序,在整个加工系统刚性允许的情况下,应尽量使其在整个加工过程中产生断屑,尽量采用逆铣方式,使形成的铁屑由厚变薄,并且铁屑形状为“9”字形、“6”字形或“C”字形。第五,加工中保持适当的有效刀具包角,使得刀具的每一个有效加工齿能够*大限度地保证*长冷却时间。加工中保持适当、合理地刀具有效包角,非常有利于提高难加工材料的切削效率、延长刀具加工寿命,对于加工难加工材料零件极为重要。刀具有效包角,反映到切削参数上与切削深度Ap和切削宽度Ae以及刀具直径Dc有着直接的关系。特别是在加工难加工材料时,应尽量避免满刀切削。在实际加工中,刀具的切削包角每增大一倍,刀具寿命会减少约30%。
  • 2
    刀具磨损以外的考虑因素
    威尼人斯网址对生产的影响第一步当然是:刀具的购置费用。显示了机加过程中的所有成本要素,它们的总合称之为COGS。这些数据可以用来做车间的生产成本比较分析,并且可以从中找出降低成本的有效途径,达到提高盈利的目的。刀具对于生产影响还体现在时间成本方面,其中包括机加过程中修正刀具外轮廓所需要的时间。刀具的更换和初始设定所需要的时间会通过SMED分析来研究,该技术提供了除刀具磨损和失效以外的成本分析方法。部分的时间成本来自于获取和整理刀具,以及运行刀具的安装和加载程序所损耗的时间。OEE可以分析出总的制造时间成本中究竟有多少是真正有效时间。通过OEE分析可以找出浪费源以及标准流程,从而可以减少浪费,提高生产力。具体来说,在OEE分析中,总的生产时间成本被计算出来以后,会扣除其中的计划停机时间、不可预测的故障时间、更换配件时间、非计划的小停顿和减速时间、废料返工时间,剩余的时间就是真正有效的生产时间,会按百分比来表示。OEE达到100% ——一个不可企及的目标——就意味着整个生产过程的流畅度达到**程度,所有产品都达到质量要求,生产效率非常高,时间浪费为零。VSM可以分析出整个制造过程中有哪些性能平衡改进的工作要完成。展示了当系统中一个环节的性能表现特别突出,以致不能与其它环节相匹配时,会导致怎样的后果。这就好比赛艇比赛,如果其中一个桨手的能力远远高于其他桨手,并不会使赛艇行进地更快,相反还会对整个团队带来一定的伤害。生产过程中针对每一个环节所做的改善,都必须综合考虑产量、工件的多样性、材料特性、几何特征、机床、夹具等因素,只有这样才能让整个制造过程的性能平衡度和协调度达到更高的水平。
  • 3
    刀具寿命管理功能
    刀具寿命管理功能是FANUC系统自带的一种比较实用的功能,在刀具寿命管理画面中设定每把刀的使用寿命,当刀具使用寿命到达设定寿命时,系统就会发出刀具寿命到达报警,提醒操编辑及时更换刀具,避免因刀具磨损严重导致加工工件报废。刀具寿命管理功能属于FANUC系统默认功能(0i系列属于默认功能,31i系列属于选配功能),具有单独的寿命管理设定画面(如下图),但是在很多设备上却找不到刀具寿命管理的画面,这是因为设备并没有打开刀具寿命管理功能,那么该如何打开系统刀具寿命管理功能呢?首先以0i-D系统为例,若想打开系统刀具寿命管理功能,需要将参数8132#0(TLF)设定为1,该参数用于刀具寿命管理功能的打开与关闭,设定为0表示关闭刀具寿命管理功能,设定为1表示打开刀具寿命管理功能;此时系统会提示需要关闭电源,重新启动,重启系统后刀具寿命管理画面就可以正常显示了;对于0i-F系统来说,若想打开刀具寿命管理功能,除了需要将参数8132#0(TLF)设定为1之外,还需要设定参数6813,参数6813为设定刀具寿命管理*大组数,设定范围为0~256,若设定为0,则系统默认刀具寿命管理功能关闭;设定完成后,系统提示关闭电源,重新启动,重启设备后,刀具寿命画面就可以正常显示了。
  • 4
    刀具的寿命我教你算!
    刀具磨损①后刀面磨损;②刻划磨损;③月牙洼磨损;④切削刃磨钝;⑤切削刃崩刃;⑥切削刃裂纹;⑦灾难性失效。刀具寿命通常取决于不同的工件和刀具材料,以及不同的切削工艺:定量分析刀具寿命终止点的一种方式是设定一个可以接受的*大后刀面磨损极限值(用VB或VBmax表示)。刀具寿命可用预期刀具寿命的泰勒公式表示,即:VcTn=C,该公式的一种更常用的形式为:VcTn×Dxfy=C,Vc为切削速度;T为刀具寿命;D为切削深度;f为进给率;x和y由实验确定;n和C是根据实验或已发表的技术资料确定的常数,它们表示刀具材料、工件和进给率的特性。不断发展的*佳刀具基体、涂层和切削刃制备技术对于限制刀具磨损和抵抗切削高温至关重要。这些要素,加上在可转位刀片上采用的断屑槽和转角圆弧半径,决定了每种刀具对于不同的工件和切削加工的适用性。所有这些要素的*佳组合能够延长刀具寿命,使切削加工更经济、更可靠。
  • 5
    刃口钝化能提高刀具耐用度
    从经过刃口钝化处理的刀具(如一把带4个切削刃的整体硬质合金铣刀,直径D=16mm,螺旋角λ=40°,前角γ=12°,径向后角α=10°)的微观形状可以清楚地看到,刀具刃口经过精密修整处理后,除刃口被钝化外,刃沟表面也被抛光。用经过刃口钝化处理的刀具,按传统的切削参数进行加工时,其使用寿命可提高70%。刃口钝化量越大,刀具的耐磨损性能越好。未经钝化处理的刀具在切削加工时,刃口部位会因细微破损而出现较大磨损,而这种现象在经过刃口钝化处理的刀具上很少发生,这是因为在切削加工中,切削刃上会产生很大压力,并在经钝化处理的刀刃上形成一些粘结物,从而使刀刃变得更坚固而不易磨损。刀具经过钝化处理后,刃口的切削性能更加稳定,这对提高钛金属的加工效率尤为重要。由于可有效避免刃口破损,因此,刀具磨损的分布和过程十分均匀和稳定,切削加工的安全性和可靠性也大为提高。在刃口钝化量*大的情况下,加大每齿进给量的试验数据表明:当每齿进给量 fz=0.06mm,即在比普通切削条件增加一倍的情况下,刀具的耐用度*高。试验在切削量达到vw=2300cm3时中断停止。由于减小了各个切削刃的切削行程,因此fz=0.06mm时比fz=0.03mm时的刀具耐用度大为提高。为了加工相同数量的材料,有必要降低刀具的转速。而当切削厚度大于刀具刃口后面节段Sα 时,也能改善刀具磨损状况。但是,继续提高刀齿进给量,会引起机床机械负荷增大而导致磨损加大,使切削量下降。另外,刃口经过钝化处理还可降低切削过程产生的颤振,即使选用较高的切削参数进行切削加工,仍可保证刀具的耐用度。刃口经钝化处理后,刀具在使用时磨损非常均匀,此时在刀具的前面和后面都会形成粘结物。当进给量较大时,刃口并未出现明显破损。为了做进一步试验,将每齿进给量提高到 fz=0.15mm,切削深度减小到ap=5mm。当切削深度较大时,切削力也相应增大,从而导致刀具破损。当进给量也较大,切削深度ap=16mm时,切削过程会出现颤振,使刀具发生破损,机床主轴也会受损。
  • QQ咨询
  • 电话咨询
  • 13920459843
  • 021-51870926
XML 地图 | Sitemap 地图