资讯动态
  • 1
    刀具磨损机理分析
    刀具损伤类型刀具损伤主要分为2种类型:刀具摩擦磨损和刀具断裂损伤,刀具磨损又包括正常均匀磨损和异常磨损,其中正常均匀磨损是刀具磨损的主要形式,刀具表面受到岩土体表面及破碎颗粒的不断挤压摩擦,导致刀具表面材料的缓慢去除。正常磨损体现在盾构刀具的合金磨损程度较为均匀。而异常磨损则是刀具在不均匀受力状态下发生持续滑移时导致局部严重磨损现象,主要体现在滚刀的偏磨、弦磨,切刀刀刃崩落等。断裂损伤是刀具在高应力条件下受到较大块体冲击断裂或受到循环应力作用导致疲劳损伤的现象,如刀齿崩裂、刀体断裂等。刀具磨损分析刀具磨损的产生主要是由合金刀具与岩土体相互接触作用的结果,*终物体表面出现材料损失的现象,其本质是荷载反复作用下发生能量转换并产生能量耗散的过程。岩土体作用力对刀具做功,能量以3种形式耗散:刀具高温热能、刀具磨屑或断裂、刀具动能。其中第3种形式刀具动能的转换仅针对滚刀。磨损的外在表现是摩擦表面或界面行为,刀具界面受荷发生塑性变形,产生微观裂纹或裂痕,微观裂纹扩展产生磨屑或断裂。刀具磨损构成基于摩擦学理论,可将磨损机制分为磨粒磨损、黏着磨损、疲劳磨损和扩散磨损。实际磨损过程通常不是以单一形式出现的,而是几种不同的磨损形式的综合表现。磨损计算方法的建立必须考虑磨损现象的特征,这些特征与通常的强度破坏不相同。刀具磨损主要来源于金属岩块相互作用和金属压碎区相互作用,相应的刀具磨损可分为直接磨损和二次磨损,直接磨损指刀具与完整岩块相互作用时产生的磨损,属于2个表面粗糙峰直接咬合引起的黏着磨损;二次磨损指夹在2个表面的破碎颗粒造成的刀具磨损,属于磨粒磨损中的三体磨损。同时滚刀破岩过程中,二次磨损也包括与相对滚动的摩擦表面接触形成的循环变化应力作用下的疲劳磨损。磨损机制中的扩散磨损主要是由于高温度场下化学元素交互运动引起,合金刀具工作温度相对较低,分子在界面间的交换比较缓慢,扩散磨损在刀具磨损中所占比例可以忽略,因此,刀具的磨损主要表现为:①岩土体中的硬质磨粒对刀刃表面进行磨削,在刀刃表面形成犁沟,表面产生多次变形,*终导致表面材料脱落;②硬质磨粒被垂直荷载压入刀刃表面产生塑性变形并形成黏着点,在切向荷载的作用下黏着点被剪断,附着于硬质颗粒表面脱落;③刀具与岩土接触时交变接触应力作用下的疲劳磨损断裂或脱落。
  • 2
    陶瓷刀具材料的种类、性能和特点及刀具应用
    陶瓷刀具具有硬度高、耐磨性能好、耐热性和化学稳定性优良等特点,且不易与金属产生粘接。陶瓷刀具在数控加工中占有十分重要的地位,陶瓷刀具已成为高速切削及难加工材料加工的主要刀具之一。陶瓷刀具广泛应用于高速切削、干切削、硬切削以及难加工材料的切削加工。陶瓷刀具可以高效加工传统刀具根本不能加工的高硬材料,实现“以车代磨”;陶瓷刀具的*佳切削速度可以比硬质合金刀具高2~lO倍,从而大大提高了切削加工生产效率;陶瓷刀具材料使用的主要原料是地壳中*丰富的元素,因此,陶瓷刀具的推广应用对提高生产率、降低加工成本、节省战略性贵重金属具有十分重要的意义,也将极大促进切削技术的进步。⑴ 陶瓷刀具材料的种类陶瓷刀具材料种类一般可分为氧化铝基陶瓷、氮化硅基陶瓷、复合氮化硅一氧化铝基陶瓷三大类。其中以氧化铝基和氮化硅基陶瓷刀具材料应用*为广泛。氮化硅基陶瓷的性能更优越于氧化铝基陶瓷。⑵ 陶瓷刀具的性能、特点① 硬度高、耐磨性能好:陶瓷刀具的硬度虽然不及PCD和PCBN高,但大大高于硬质合金和高速钢刀具,达到93-95HRA。陶瓷刀具可以加工传统刀具难以加工的高硬材料,适合于高速切削和硬切削。② 耐高温、耐热性好:陶瓷刀具在1200℃以上的高温下仍能进行切削。陶瓷刀具具有很好的高温力学性能, A12O3陶瓷刀具的抗氧化性能特别好,切削刃即使处于赤热状态,也能连续使用。因此,陶瓷刀具可以实现干切削,从而可省去切削液。③ 化学稳定性好:陶瓷刀具不易与金属产生粘接,且耐腐蚀、化学稳定性好,可减小刀具的粘接磨损。④ 摩擦系数低:陶瓷刀具与金属的亲合力小,摩擦系数低,可降低切削力和切削温度。⑶ 陶瓷刀具有应用陶瓷是主要用于高速精加工和半精加工的刀具材料之一。刀具破损适用于切削加工各种铸铁(灰铸铁、球墨铸铁、可锻铸铁、冷硬铸铁、高合金耐磨铸铁)和钢材(碳素结构钢、合金结构钢、高强度钢、高锰钢、淬火钢等),也可用来切削铜合金、石墨、工程塑料和复合材料。
  • 3
    金刚石刀具的种类
    ① 天然金刚石刀具:天然金刚石作为切削刀具已有上百年的历史了,天然单晶金刚石刀具经过精细研磨,刃口能磨得极其锋利,刃口半径可达0.002μm,能实现超薄切削,可以加工出极高的工件精度和极低的表面粗糙度,是公认的、理想的和不能代替的超精密加工刀具。② PCD金刚石刀具:天然金刚石价格昂贵,金刚石广泛应用于切削加工的还是聚晶金刚石(PCD),自20世纪70年代初,采用高温高压合成技术制备的聚晶金刚石(Polycrystauine diamond,简称PCD刀片研制成功以后,在很多场合下天然金刚石刀具已经被人造聚晶金刚石所代替。PCD原料来源丰富,其价格只有天然金刚石的几十分之一至十几分之一。PCD刀具无法磨出极其锋利的刃口,加工的工件表面质量也不如天然金刚石,现在工业中还不能方便地制造带有断屑槽的PCD刀片。因此,PCD只能用于有色金属和非金属的精切,很难达到超精密镜面切削。③ CVD金刚石刀具:自从20世纪70年代末至80年代初,CVD金刚石技术在日本出现。CVD金刚石是指用化学气相沉积法(CVD)在异质基体(如硬质合金、陶瓷等)上合成金刚石膜,CVD金刚石具有与天然金刚石完全相同的结构和特性。威尼人斯网址CVD金刚石的性能与天然金刚石相比十分接近,兼有天然单晶金刚石和聚晶金刚石(PCD)的优点,在一定程度上又克服了它们的不足。
  • 4
    HSM 对切削刀具的要求
    1. 几何形状刀具振动直接影响加工所获得的表面质量。因此,在HSM精加工过程中保持刀具均匀的切削力极其重要,避免引发刀具振动。刀具相邻几何特性对切削力的影响:1)同心度好有利于负载在切削刃上均匀分布;2)较大的切削刃重叠有利于获得均匀的切削力特性(较大螺旋角和槽数);3)短切削长度有利于获得较好的刚性(相对于机床陡壁,轴的直径被减小一点);4)芯部横截面状态*好,槽口处的应力集中*小。可以使用HSM加工高强度材料,这意味着抗变形能力随着待加工材料硬度的增加而增大。切削刃上负载增加,要求对切削刃的几何形状进行稳定的设计。然而,高速切削状态下在工件表面的自由区域还将产生更多的摩擦热,这意味着必须减小刀具的间隙角。因此,增加切削刃的稳定性只能通过减小斜角的方式实现。在材料很硬、刀具材料很脆的情况下,甚至可能导致负的斜角。精确配合的半径在刀刃尖部磨削,以避免突然变热时达到红热状态或者切削刃局部断裂。如果对加工工件的形状精度要求很高,则所用精加工刀具的球部半径对于待加工工件的形状精度有直接的影响。因此,作为基本条件,在非常精密零件的精加工过程中使用具有非常严格半径公差(在微米范围内)的刀具是非常重要的。2. 材料和涂层刀具材料必须比待加工材料硬。工件材料与刀具材料之间的硬度差越大,刀具磨损越小,刀具寿命越长。因为局部温度很高,还必须保证刀具材料具有抗氧化性。较大热负载波动和对刀具材料抗氧化性的要求使得*终需要在精细颗粒碳化钨刀体上进行涂层。
  • 5
    刀具高速切削加工技术特点
    高速切削加工技术中的“高速”是一个相对概念,对于不同的加工方法和工件材料与刀具材料,高速切削加工时应用的切削速度并不相同。通常把切削速度比常规高出5~10倍甚至以上的切削加工叫作高速切削或超高速切削。以德国达姆施塔特工业大学H.Schulz教授提出的铣削速度范围比较具有代表性:铝合金1000~7000m/min,铸铁800~3000m/min,钢500~2000m/min,钛合金100~1000m/min,镍基合金50~500m/min。传统硬质合金类刀具加工铝合金壳体切削速度一般在150~300m/min之间,而聚晶金刚石(PCD)类刀具的切削速度能达到2000m/min以上,实现高速切削。高速切削加工时,高切削速度在材料剪切区短时释放大量热能。因此,随着切削速度的增加,切削的剪切区、切屑压缩区和变形区内材料的单位切削力反而下降。总切削力和必需的切削功率同样下降。高速切削工艺典型的小切削深度结合高进给速度和高主轴转速,将降低切削刃切入工件的时间,或称接触时间。威尼人斯网址在高速切削加工过程中还应该考虑的一个问题是刀柄与机床主轴锥孔的连接方式,常用的锥柄有BT、HSK、CAT及CAPITO等多种形式,但是在高速切削时HSK因其独特的双面接触过定位结构可以保证刀尖很高的跳动要求,性能卓越,特别适合高转速工况。
  • QQ咨询
  • 电话咨询
  • 13920459843
  • 021-51870926
XML 地图 | Sitemap 地图