资讯动态
  • 1
    影响刀具使用的因素--刀具角度
    涂层技术的发展与应用对刀具性能的改善和切削加工技术的进步发挥了关键的作用,而涂层刀具也已成为现代切削刀具的重要标志。刀具角度是指刀具切削部分各几何要素之间,或它们与参考平面之间构成的两面角或线、面之间的夹角。为了保证切削加工的顺利进行,获得合格的加工表面,所用刀具的切削部分必须具有合理的几何形状。而刀具角度正是用来确定刀具切削部分几何形状的重要参数。01影响刀具使用的几个因素刀具材料,涂层,刀具角度,冷却液,切削方式,切削参数,铁削控制,刃口处理,刀具结构,机床刚性02刀具的构成要素刀具的切削部分主要由刀面和切削刃两部分构成。刀面用字母A与下角标组成的符号标记,切削刃用字母S标记,副切削刃及相关的刀面标记在右上角加一撇以示区别。(1)前面(前刀面)Ar:刀具上切屑流出的表面;(2)后面(后刀面)Aα:刀具上与工件过渡表面相对的刀面;(3)副后面(副后刀面)Aα′:刀具上与工件新形成的表面相对的刀面;(4)主切削刃S:前面与后面形成的交线,在切削中承担主要的切削任务;(5)副切削刃S′:前面与副后面形成的交线,它参与部分的切削任务;(6)刀尖:主切削刃与副切削刃汇交的交点或一小段切削刃。03正交平面参考系中的刀具标注角度刀具角度参考平面用于构成刀具角度的参考平面主要有:基面、切削平面、正交平面、法平面、假定工作平面和背平面。在基面Pr上刀具标注角度有:主偏角κr──主切削平面Ps与假定工作平面Pf间的夹角;副偏角κr′──副切削平面Ps′与假定工作平面Pf间的夹角。在切削平面Ps上刀具标注角度有:刃倾角λs──主切削刃S与基面Pr间的夹角。刃倾角λs有正负之分,当刀尖处于切削刃*高点时为正,反之为负。在正交平面Po上刀具标注角度有:前角γO──前面Ar与基面Pr间的夹角。前角γO有正负之分,当前面Ar与切削平面Ps间的夹角小于90时,取正号;大于90时,则取负号;后角αO──后面Aα与切削平面Ps间的夹角。以上五个角度κr、κr′、λs、γO、αO为车刀的基本标注角度。在此,κr、λs确定了主切削刃S的空间位置,κr′、λs′确定了副切削刃S′的空间位置;γO、αO则确定了前面Ar和后面Aα的空间位置,γO′、αO′则确定了副前面Ar′和副后面Aα′的空间位置。04不同刀具角度对加工的影响前角主要影响切屑变形和切削力的大小以及刀具耐用度和加工表面质量的高低。前角增大,可以使切削变形和摩擦阻力减小,切削力和切削热降低,加工表面质量提高;但前角过大会使切削刃强度减弱,散热条件变差,刀具寿命下降,甚至会造成崩刃。前角减小,刀具强度提高,切屑变形增大,易断屑;但前角过小,会使切削力和切削热增加,刀具强度随之降低。后角主要影响后刀面与过渡表面层之间的摩擦和刀头的强度。后角越大,摩擦越小,刀具耐用度越高,加工表面质量越好;但后角太大会导致刀头强度减弱,散热情况变差。主偏角影响刀具的耐用度、已加工表面粗糙度与切削分力。减小主偏角,主刃参加切削的长度增加,负荷减轻,同时加强了刀尖,增大了散热面积,使刀具寿命提高;但同时会使吃刀抗力增大,当加工刚性较弱的工件时,易引起工件变形和振动。副偏角影响已加工表面的粗糙程度和刀尖强度。减小副偏角,可以使被加工表面光洁,还可提高刀具强度,改善散热条件;过小,则会使副切削刃与已加工面的摩擦增加,引起震动,降低表面质量和刀具耐用度。刃倾角主要影响切屑流向、刀尖强度和抗冲击能力。刃倾角为正值,切削开始时刀尖与工件先接触切屑流向待加工表面,可避免缠绕和划伤已加工表面,对半精加工、精加工有利;刃倾角为负值,切削开始时刀尖与工件后接触,切屑流向已加工表面,容易将已加工表面划伤;在粗加工开始,尤其是在断续切削时,可避免刀尖受冲击,起到保护刀尖的作用。
  • 2
    刀具断屑
    刀具断屑可靠与否,对正常生产与操编辑安全都有着重大影响。在切削加工中,崩碎切屑会飞溅伤人,并易研损机床;而长条带状切屑会缠绕在工件或刀具上,易刮伤工件,引发刀具破损,甚至影响工人安全。对于数控机床(加工中心)等自动化加工机床,由于其刀具数量较多,刀架与刀具联系密切,断屑问题就显得更为重要,只要其中—把刀断屑不可靠,就可能破坏机床的自动循环,甚至破坏整条自动线正常运转,所以在设计、选用或刃磨刀具时,必须考虑刀具断屑的可靠性。而对于数控机床(加工中心)等,并应满足下列要求:切屑不得缠绕在刀具、工件及其相邻的工具、装备上;切屑不得飞溅,以保证操编辑与观察者的安全;精加工时,切屑不可划伤工件的已加工表面,影响已加工表面的质量;保证刀具预定的耐用度,不能过早磨损并竭力防止其破损;切屑流出时,不妨碍切削液的喷注;切屑不会划伤机床导轨或其他部件等。在满足上述要求的基础上,不同刀具对切屑长度还有不同要求。例如一般粗车钢料的*大切屑长度为100mm左右;精车则应稍长。要避免过于细碎的切屑,因为它容易嵌入机床导轨和刀具装置的一些重要部位,这样不仅需要附加防护装置,还给清除切屑带来一定的困难。对于某些不易断屑的刀具,如成形车刀、切槽车刀和切断车刀等,在数控机床等自动化机床上,应保证其稳定的卷屑。一、切屑形状的分类根据工件材料、刀具几何参数和切削用量等的具体情况,切屑形状一般有:带状屑、C形屑、崩碎屑、宝塔状卷屑、发条状卷屑、长紧螺卷屑、螺卷屑等。(1)带状屑:高速切削塑性金属材料时,如不采取断屑措施,极易形成带状屑,此形屑连绵不断,常会缠绕在工件或刀具上,易划伤工件表面或打坏刀具的切削刃、甚至伤人,因此应尽量避免形成带状屑。但有时也希翼得到带状屑,以使切屑能顺利排出。例如在立式镗床上镗盲孔时。(2)C 形屑:车削一般的碳钢、合金钢材料时,如采用带有断屑槽的车刀则易形成C形屑。C形屑没有了带状屑的缺点。但C形屑多数是碰撞在车刀后刀面或工件表面而折断的。切屑高频率的碰断和折断会影响切削过程的平稳性,从而影响已加工表面的粗糙度。所以,精加工时一般不希翼得到C形屑.而多希翼得到长螺卷屑,使切削过程比较平稳。(3)发条状卷屑:在重型车床上用大切深、大进给量车削钢件进,切屑又宽又厚,若形成C形屑则容易损伤切削刃,基至会飞崩伤人。所以通常将断屑槽的槽底圆弧半径加大,使切屑成发条状在加工表面上碰撞折断,并靠其自重坠落。(4)长紧卷屑:长紧卷屑形成过程比较平稳,清理也方便,在普通车床上是一种比较好的屑形。(5)宝塔状卷屑:数控加工、机床或自动线加工时,希翼得到此形屑,因为这样的切屑不会缠绕在刀具和工件上。而且清理也方便。(6)崩碎屑 :在车削铸铁、脆黄铜、铸青铜等脆性材料时,极易形成针状或碎片状的崩碎屑,既易飞溅伤人、又易研损机床。若采用卷屑措施,则可使切屑连成短卷状。总之,切削加工的具体条件不同,希翼得到切屑的形状也不同,但不论什么形状的切屑,都要断屑可靠。
  • 3
    刀具监控关键技术与算法
    威尼人斯网址一般由信号检测、特征提取和状态识别三部分组成,其关键技术有智能传感、信息融合、信号处理和智能学习决策。1.智能传感1.1智能传感技术多传感器信息融合与单一传感器信号处理有着本质区别。多传感器的信息更复杂,能够在不同层次上融合集成。经融合后的信息具有冗余、互补、实时与低成本性,且多传感器融合的信息更全面、更准确。1.2智能传感技术的发展趋势信息采集由单传感器向多传感器发展,特征提取由单特征值向多特征值发展;多传感器信息采集成为趋势。多传感器获取多种信号,进行多参数的智能决策;开发灵敏度高、结构紧凑、安装方便、抗干扰的传感器;向多传感器信息融合的方向发展,尤其是基于神经网络的多传感器信息融合。2.基于神经网络的多传感器信息融合信息融合需要有效算法和较强的数据处理,神经网络和计算机分别满足此要求,因此信息融合在刀具监测中广泛应用。多传感器信息融合与神经网络相结合,构成多参数、多模型系统,应用于刀具监测中,前景广阔。基于神经网络的多传感器信息融合具有如下优点:(1)信息存储在网络的联接权值和联接结构上,形式统一,便于建常识库及管理。(2)神经网络增加容错性。当传感器出现故障或检测失效时,神经网络的容错功能允许检测系统正常工作,并输出可靠信息。(3)神经网络具有自学习和自组织功能,能自适应检测环境的变化及检测信息的不确定。(4)神经网络具有并行机制,处理信息速度快,满足实时处理需要。3.信号处理3.1信号处理技术信号处理是分析处理采集的信号,获取特征值,对特征值决策分析,达到监测目的。刀具监控的信号处理方法极为丰富,有时域分析、频域分析、时频分析、统计分析、智能分析、神经网络等。传统的信号处理多集中时域或频域分析。近年来,信号处理方法则逐渐向时频分析和智能方向发展。(1)傅立叶变换将瞬时多变的时域信号转换到频域上,更有利于分析其特征和性质,而傅立叶变换是频域分析的重要方法。离散傅立叶变换(DFT)的时域和频域均离散化,可用计算机作傅立叶分析。快速傅立叶变换(FFT)使DFT 的运算效率提高1至2 个数量级。傅立叶变换用频谱特性分析表现时域信号,但也有其局限性。(2)小波分析小波分析是多分辨率分析的时频分析方法,在时域、频域都能够表征信号局部特征,其窗口大小固定不变但形状可变。小波、小波包能分析微弱故障,适应于探测正常信号中夹带的瞬态反常现象,应用前景广宽。连续小波变换是一种特征提取方法,通过将信号在时间—频率尺度上的特征提取,反映原信息的特征,但不能准确反映信号的能量大小。基于多分辨率的小波分析具有变化的时间或频率分辨率,能准确反映信号的能量大小。基于信号的小波包分析将信号分解在带宽相同、首尾相接的频带上,对高频和低频都具有较高的时频分辨率。(3)广义自适应小波广义自适应小波分析是指在小波分析中,根据信号特点,依照某种算法对一个或几个参量进行适应性选择,以取得*好的分析效果。这些参量包括小波基、小波分解尺度、平移系数和加权系数等。
  • 4
    刀具涂层机理及作用
    一、涂层刀具分类涂层刀具有四种:高速钢涂层刀具,硬质合金涂层刀具,以及在陶瓷和超硬材料(金刚石或立方氮化硼)刀片上的涂层刀具。二、刀具磨损机理及涂层作用涂层是指在强度和韧性较好的硬质合金或高速钢(HSS)基体表面上,利用气相沉积方法涂覆一薄层耐磨性好的难熔金属或非金属化合物,使刀具有表面硬度高、耐磨性好、化学性能稳定、耐热耐氧化、摩擦因数小和热导率低等特性。刀具磨损机理研究表明,在高速切削时,刀刃温度*高可达900℃,此时刀具磨损不仅是机械摩擦磨损,还有粘结磨损、扩散磨损、摩擦氧化磨损和疲劳破损,这5种磨损直接影响刀具的使用寿命。而刀具涂层所起的作用表现为:1. 涂层作为一个化学屏障和热屏障,在刀具与被切削材料之间形成隔离层。2. 通过抑制从切削区到刀片的热传导来降低热冲击。涂层刀具的构成减少了刀具与工件间的扩散和化学反应,从而减少了物理磨损。3. 有效减少摩擦力及摩擦热。刀具通过涂层处理,实现固体润滑,减少摩擦和粘结,使刀具吸取热量减少,从而可承受较高的切削温度。4. 在陶瓷和超硬材料刀片上的涂层是硬度较基体低的材料,目的是为了提高刀片表面的断裂韧度,可减少刀片的崩刃及破损,扩大应用范围。三、刀具表面硬质层对涂层材料的一般性要求:1.硬度高,耐磨性能好。2.化学性能稳定,不与工件材料发生化学反应。3.耐热耐氧化,摩擦系数低,与基体附着牢固等。
  • 5
    刀具基本常识
    刀具材料应具备基本性能刀具材料的选择对刀具寿命、加工效率、加工质量和加工成本等的影响很大。刀具切削时要承受高压、高温、摩擦、冲击和振动等作用。因此,刀具材料应具备如下一些基本性能:(1)硬度和耐磨性。刀具材料的硬度必须高于工件材料的硬度,一般要求在60HRC以上。刀具材料的硬度越高,耐磨性就越好。(2)强度和韧性。刀具材料应具备较高的强度和韧性,以便承受切削力、冲击和振动,防止刀具脆性断裂和崩刃。(3)耐热性。刀具材料的耐热性要好,能承受高的切削温度,具备良好的抗氧化能力。(4)工艺性能和经济性。刀具材料应具备好的锻造性能、热处理性能、焊接性能、磨削加工性能等,而且要追求高的性能价格比。数控刀具材料的选用原则目前广泛应用的数控刀具材料主要有金刚石刀具、立方氮化硼刀具、陶瓷刀具、涂层刀具、硬质合金刀具和高速钢刀具等。刀具材料总牌号多,其性能相差很大。如下表各种刀具材料的主要性能指标。数控加工用刀具材料必须根据所加工的工件和加工性质来选择。刀具材料的选用应与加工对象合理匹配,切削刀具材料与加工对象的匹配,主要指二者的力学性能、物理性能和化学性能相匹配,以获得*长的刀具寿命和*大的切削加工生产率。具有不同物理性能的刀具,如,高导热和低熔点的高速钢刀具、高熔点和低热胀的陶瓷刀具、高导热和低热胀的金刚石刀具等,所适合加工的工件材料有所不同。加工导热性差的工件时,应采用导热较好的刀具材料,以使切削热得以迅速传出而降低切削温度。金刚石由于导热系数及热扩散率高,切削热容易散出,不会产生很大的热变形,这对尺寸精度要求很高的精密加工刀具来说尤为重要。
  • QQ咨询
  • 电话咨询
  • 13920459843
  • 021-51870926
XML 地图 | Sitemap 地图